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IntroducƟon
The relaƟve margin of errors (RMEs) for major survey esƟmates are the benchmark of
the survey design quality. For example, the internaƟonal visitor survey (IVS) was de-
signed to achieve a 5 per cent relaƟve margin of error (at the 95 per cent confidence
level) for total visitor expenditure, and less than 10 per cent relaƟve margin of error
for expenditure from the top six tourismmarket countries (Australia, United Kingdom,
United States, China, Japan and Germany).

In designing of the survey, it is necessary to know what sample sizes are required to
achieve the target RMEs under certain confidence level, or when the resources (sam-
ple sizes) are limited, what RMEs can be achieved. Therefore, a equaƟonwhich relates
the RME, the sample size and confidence level, will become a handy tool.

In this document, we establish a simple empirical equaƟon, based on historic RME
esƟmates and corresponding sample sizes to serve this purpose. Although themethod
is illustrated in the context of IVS, it is general enough to be able to apply to other
surveys.

TheoreƟcal background
The margin of error (ME) is defined as the half width of confidence interval. When
the esƟmates (θ̂) are assumed to be normally distributed, the margin of error is of-
ten expressed as a funcƟon of the standard error (SE). E.g., for 95% confident level
(significance level α = 5%),

ME(θ̂) = z1−α/2SE(θ̂) = 1.96SE(θ̂) = 1.96

√
Var(θ̂).

For posiƟve measures of a survey sample such as mean and total of the expenditures,
the relaƟve margin of error (RME)

RME(θ̂) = 1.96
SE(θ̂)
θ̂

(1)

are oŌen used.

Empirical equaƟon
By central limit theorem, when sample size (n) increases, an esƟmate (θ̂) approaches
to its true value (θ) in order of 1/

√
n. Therefore, θ̂ can be represented as

θ̂ = θ +
ϵ√
n

with ϵ ∼ N(0, σ2
ϵ ) being a normally distributed error and terms “smaller” than order

of 1/
√
n being ignored.

Consequently,

RME(θ̂) =
1.96σϵ/

√
n

θ + ϵ/
√
n

. (2)
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Rearrange formula (2), we can have

1

RME(θ̂)
=

θ

1.96σϵ

√
n+

ϵ

1.96σϵ
= b

√
n+ e, (3)

with b = 1.96σϵ

θ being a constant and e = ϵ
1.96σϵ

being a constant variance error term.

Therefore, the relaƟonship between a set of RMEs ({RMEi}) and the corresponding
sample sizes ({ni}) can be described by a linear regression without intercept model

1

RMEi
= b

√
ni + ei, ei ∼ N(0, σe),

or a linear regression with intercept model

1

RMEi
= a+ b

√
ni + ei, ei ∼ N(0, σe),

if θ̂ is a biased esƟmate of θ.

In pracƟce, the true value of RME are not available. Rather, the esƟmated RMEs (R̂ME)
can be usd as a proxy, which deviates from the true RME in order of 1/

√
n. In this case,

1

R̂MEi
= a+ b

√
ni + ei, ei ∼ N(0, σe) (4)

is sƟll an appropriate model relaƟng the sample sizes to RMEs, with the coefficient a
accounƟng for the difference between R̂ME and RME and the possible biasedness of
θ̂ and R̂ME from θ and RME.

Establishing the empirical equaƟon
In this secƟon, we showhow to establish the empirical equaƟon of RMEs vs sample size
for expenditure staƟsƟcs (total and mean) in InternaƟonal Visitor Survey (IVS) based
on historic RME esƟmates.

EsƟmaƟon of RMEs
As a complexly designed sample survey, the standard errors for esƟmates (and there-
fore RMEs calculated by formula 1) of IVS will usually neither be same as the standard
errors simply calculated by the observaƟons, nor that in a simple random sampling
design (see e.g. p6 in Lumley, 2011)).

Generally, the standard error for an esƟmate increases as the complexity of the sam-
pling design increases. For example, levels of dimensions that have been included in
the weighƟng (e.g. Australia) will have much beƩer esƟmates than those that aren’t
(e.g. Tonga, which is categorised as Other), basically because the esƟmate is in effect
only for average spend for Australia as we know exactly howmany came, whereas with
Tonga we have to esƟmate both the number who came (from the sampling process)
as well as their spend.
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Unlike in simpler sampling designs where analyƟc formulas can be derived to compute
the standard error, the complex sampling designs (such as IVS) do not have analyƟc
formulas available. Therefore, the re-sampling techniques such as bootstrapping and
jackknifing become generally applicable and robust approaches for standard error es-
ƟmaƟon in complex sample survey.

Compute the empirical equaƟon
The RMEs for annual (year ended June) expenditure esƟmates for the whole popula-
Ɵon, for the sub-populaƟons grouped by countries and by purpose of visit (POV) from
1998 to 2014 have been calculated by bootstrapping approach. An excerpt of the re-
sults are presented below.

Emp.Equation.df[c(1:3,222:224,290:292),]

## Country_POV_Total YEJun RMEs SampleSizes groups
## 1 Africa and Middle East YEJun1998 29 88 by_country
## 2 Australia YEJun1998 13 1279 by_country
## 3 Canada YEJun1998 24 168 by_country
## 222 Business YEJun1998 12 733 by_POV
## 223 Other YEJun1998 19 280 by_POV
## 224 Holiday / vacation YEJun1998 7 3380 by_POV
## 290 Total YEJun1998 6 5377 whole
## 291 Total YEJun1999 7 5377 whole
## 292 Total YEJun2000 7 5419 whole

In conjuncƟon with the corresponding sample sizes, the linear regression model (for-
mula 4) can be fiƩed,

fit <- lm(1/RMEs~sqrt(SampleSizes), data = Emp.Equation.df)
(sum_fit <- summary(fit))

##
## Call:
## lm(formula = 1/RMEs ~ sqrt(SampleSizes), data = Emp.Equation.df)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.079687 -0.005341 -0.000056 0.006114 0.035896
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.053e-02 1.209e-03 8.71 <2e-16 ***
## sqrt(SampleSizes) 2.168e-03 4.051e-05 53.53 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.01157 on 304 degrees of freedom
## Multiple R-squared: 0.9041,Adjusted R-squared: 0.9038
## F-statistic: 2866 on 1 and 304 DF, p-value: < 2.2e-16
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with the fiƩed coefficients a = 0.011± 0.002 and b = 0.0022± 0.0001.

The RMEs vs n plots (figure 1) shows that the empirical equaƟon well described the
relaƟonship between RMEs and sample sizes (n), regardless of the various magnitudes
of sample size for populaƟons (group “whole”) and that for sub-populaƟons (groups
“by_country” and “by_POV”)
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Figure 1: FiƩed empirical equaƟon of RMEs vs n for IVS expenditures

To diagnose the validity of linear regression model assumpƟon, figure 2 shows the
existence of linear relaƟonship between 1

R̂ME
and sample size n.
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Figure 2: Regression diagnosƟc - linearity of the linear regression model. The linearity
assumpƟon is approximately valid.

Figure 3 shows that the constant variances assumpƟon for residuals is notwell-saƟsfied.
The trumpet-shaped residuals-vs-fiƩed plot suggests that larger size populaƟons/sub-
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populaƟons (corresponding to larger sample sizes as well as the large fiƩed values)
are more heteroscedasƟc than smaller populaƟon/sub-populaƟon. However, since
the RME values decreases as sample sizes increases,and the linearity of the empirical
equaƟon is well maintained, the impact of this heteroscedasƟcity of residuals on the
validity of the empirical equaƟon can be ignored.
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Figure 3: Regression diagnosƟc - verificaƟon of constant variance for residuals. A
trumpet-shaped feature is observed.

Figure 4 show the normality assumpƟon of residuals is approximately valid for individ-
ual groups (“by_country”,“by_POV” and “whole”). For the collecƟon of residuals for
all groups, the linearity of the qq-plot is not perfect but sƟll acceptable if excluding
some outliers.
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Figure 4: Regression diagnosƟc - normality of residuals. The qq plots shows the nor-
mality is approximately saƟsfied.

In summary, the proposed empirical equaƟon can (at least approximately) describe
the relaƟonship between RMEs and sample size.

Usage of the empirical equaƟon
Once the empirical equaƟon is established, the predicted RME can be computed based
on the sample size and vice versa. For example, for a (total or mean) expenditure
esƟmate with sample size 1000, the relaƟve margin of error is expected to be 12.4%
at 95% confidence level.

n <- 1000
(RME <- round(1/(a+b*sqrt(n)),1))

## [1] 12.4

Although current empirical equaƟon was established for 95% confidence level, it can
be easily converted to equaƟons for other confidence levels by the formula (5),

RME1−α =
z1−α/2

1.96
× 1

a+ b
√
n

(5)

where 1 − α is the target confidence level and z1−α/2 is the normal score (z-score).
Table (1) lists the predicted RMEs for some levels of the sample size.
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Table 1: Predicted RMEs for specified sample sizes under confidence level 95%, 90%
and 80% for expenditure esƟamtes.

Sample Size Confidence Level
95% 90% 80%

20 48.0 40.2 31.3
50 37.7 31.5 24.6

100 30.3 25.4 19.8
200 23.7 19.9 15.5
500 16.6 13.9 10.8

1000 12.4 10.4 8.1
2000 9.1 7.6 6.0
5000 6.0 5.0 3.9

10000 4.3 3.6 2.8

Based on the empirical equaƟon, the minimum required sample sizes to achieve cer-
tain level of relaƟve margin of error can be computed by the formula (6), as shown in
table (2)

n =
1

b2

(
z1−α/2

1.96RME1−α
− a

)2

. (6)

Table 2: Minimum samples size for expected relaƟvemargin of error under confidence
level 95%, 90% and 80% for expenditure esƟamtes.

Expected RMEs Confidence Level
95% 90% 80%

5 7380 5050 2956
10 1637 1091 609
15 640 414 219
20 314 196 97

The relaƟonship can also be described by Figure 5.
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Figure 5: RMEs vs n for IVS expenditures with confidence level 80%, 90% and 95%.
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Empirical equaƟon for counts (number of visitors) esƟmates
To further verify the applicability of the proposed method, we may apply the above
approach to the esƟmates of number of visitors (counts) rather than the expenditure.
Since the number of visitors is a differentmeasure and therefore has different inherent
variability from the expenditure, it is expected that the coefficients for the empirical
equaƟon will be different. But what we are interested in is if the general methodology
is sƟll applicable.

The result shows that RMEs for the counts are generally smaller than RMEs for the
expenditures. This can be explained by the fact that extra variaƟons due to various ex-
penditures of each visitor. Therefore expenditure esƟmates are expected less precise
than counts esƟmates.

Emp.Equation.df[c(1:3,222:224,290:292),]

## Country_POV_Total YEJun RMEs SampleSizes groups
## 1 Africa and Middle East YEJun1998 23 88 by_country
## 2 Australia YEJun1998 7 1279 by_country
## 3 Canada YEJun1998 17 168 by_country
## 222 Business YEJun1998 9 733 by_POV
## 223 Other YEJun1998 14 280 by_POV
## 224 Holiday / vacation YEJun1998 6 3380 by_POV
## 290 Total YEJun1998 5 5377 whole
## 291 Total YEJun1999 5 5377 whole
## 292 Total YEJun2000 5 5419 whole

For esƟmated number of visitors, the fiƩed linear regression model (formula 7) is,
1

R̂MEi
= a+ b

√
ni + ei, ei ∼ N(0, σe) (7)

with coefficients a = 0.017± 0.003 and b = 0.0026± 0.0001.

The paƩern of resulƟng RMEs-vs-n plot (figure 6) is similar as that for expenditure esƟ-
mates with only different coefficients. This confirmed the applicability of the proposed
method.
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Figure 6: Empirical equaƟon of RMEs vs n for IVS number of visitors.
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The features of diagnosƟc plots (figure 7) for linear regression model assumpƟon are
also similar. The linearity maintains well, while the trumpet-shaped residuals is an
indicaƟon of heteroscedasƟcity with respect to the populaƟon size.
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Figure 7: Regression diagnosƟcs - linearity and constant variance of residuals for fiƫng
empirical equaƟon of RMEs vs n for IVS number of visitors. Linearity is saƟsfied, while
the variance of residuals are not constant.

Figure 8 show the normality assumpƟon of residuals. The results are similar to that
for expenditure esƟmates.
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Figure 8: Regression diagnosƟc - normality of residuals for fiƫng empirical equaƟon
of RMEs vs n for IVS number of visitors. Although not perfect, the linearity of QQ plots
are approximately maintained.

The tables of predicted RMEs for specified sample sizes (table 3) and the minimum
samples sizes for parƟcular RMEs show that smaller RMEs are achieved for number of
visitors (counts) than for expenditures for same sample sizes.
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Table 3: Predicted RMEs for specified sample sizes for counts esƟmates.
Sample Size Confidence Level

95% 90% 80%
20 34.9 29.2 22.8
50 28.3 23.6 18.5

100 23.3 19.5 15.2
200 18.6 15.6 12.1
500 13.3 11.1 8.7

1000 10.1 8.4 6.6
2000 7.5 6.3 4.9
5000 5.0 4.2 3.3

10000 3.6 3.0 2.4

Table 4: Minimum samples size for expected relaƟve margin of error for counts esƟ-
mates.

Expected RMEs Confidence Level
95% 90% 80%

5 4954 3344 1909
10 1019 658 345
15 365 222 104
20 161 91 36

The relaƟonship can also be described by Figure 9.
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Figure 9: RMEs vs n for number of visitors with confidence level 80%, 90% and 95%
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Some further discussions

The applicability of proposed method
• Although the examples are based only on the historic data of IVS, the proposed

methodwas derivedon a general basis. Therefore, it is expected that themethod-
ology can apply to other surveys.

• The empirical equaƟon (indexed by the fiƩed coefficients) depends on the inher-
ent heterogeneity of the target survey measures. Therefore, the equaƟon fiƩed
for one survey measure (e.g. expenditure) cannot be directly used to another
measure (e.g. number of visitors).

• Furthermore, the equaƟon established for one parƟcular survey (say IVS) cannot
be directly used for other survey.

• An implicit assumpƟon for the validity of the empirical equaƟon is that the vari-
ability of the historic populaƟons (e.g. variability of expenditures of visitors from
1998 to 2014) can reflect that of the future populaƟon (e.g. variability of expen-
ditures of visitors in 2015). However, this is a reasonable assumpƟon.

The sensiƟvity of the empirical equaƟon (or fiƩed curve) to the coef-
ficients
For some audiences, it might be interested in knowing how sensiƟve the equaƟon (or
fiƩed curve) is to the coefficients. The Figure 10 shows the curve corresponding to
the fiƩed empirical equaƟon for the IVS expenditure esƟmates (with coefficients a =
0.011 and b = 0.0022) and curves corresponding to the equaƟons with coefficients
taking the criƟcal values (a = 0.011± 0.002 and b = 0.0022± 0.0001).
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Figure 10: SensiƟvity of empirical equaƟon to the coefficients. The black line is the
curve of the fiƩed empirical equaƟon, while the red lines correspond to the equaƟons
with coefficients taking the criƟcal values.

Overall, the curves corresponding to the equaƟons with coefficients taking the criƟcal
values are close to the curve of the fiƩed empirical equaƟon.
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Summary
• For a parƟcular surveymeasure, based on the historic RME esƟmates and corre-

sponding sample size, the relaƟonship between RMEs and sample sizes can be
well (though approximately) described by a single empirical equaƟon.

• Once established, the empirical equaƟon becomes a convenient tool to predict
survey RME based on the sample size, as well as to decide sample size for target
RME.

References
Thomas Lumley. Complex surveys: A guide to analysis using R. John Wiley & Sons,

2011.

12


	Introduction
	Theoretical background
	Empirical equation

	Establishing the empirical equation
	Estimation of RMEs
	Compute the empirical equation

	Usage of the empirical equation
	Empirical equation for counts (number of visitors) estimates
	Some further discussions
	The applicability of proposed method
	The sensitivity of the empirical equation (or fitted curve) to the coefficients

	Summary

